■ Softmax 구현 (Multinomial Logistic Regression)
hypothesis = tf.nn.softmax(tf.matmul(X,W)+b)
- hypothesis 에서 tf.matmul(X,W)+b 에 tf.nn.softmax 함수 적용
cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(hypothesis),axis=1))
- Cross Entropy 를 코스트 함수로 사용한다.
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
- learining_rate 를 0.1로 학습함.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | # Lab06-1 Softmax Classifier import tensorflow as tf tf.set_random_seed(777) # for reproducibility x_data = [[1, 2, 1, 1], [2, 1, 3, 2], [3, 1, 3, 4], [4, 1, 5, 5], [1, 7, 5, 5], [1, 2, 5, 6], [1, 6, 6, 6], [1, 7, 7, 7]] y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0]] X = tf.placeholder("float", [None, 4]) Y = tf.placeholder("float", [None, 3]) nb_classes = 3 W = tf.Variable(tf.random_normal([4, nb_classes]), name='weight') b = tf.Variable(tf.random_normal([nb_classes]), name='bias') # tf.nn.softmax computes softmax activations # softmax = exp(logits) / reduce_sum(exp(logits), dim) hypothesis = tf.nn.softmax(tf.matmul(X, W) + b) # Cross entropy cost/loss cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost) # Launch graph with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for step in range(2001): sess.run(optimizer, feed_dict={X: x_data, Y: y_data}) if step % 200 == 0: print(step, sess.run(cost, feed_dict={X: x_data, Y: y_data})) print('--------------') # Testing & One-hot encoding a = sess.run(hypothesis, feed_dict={X: [[1, 11, 7, 9]]}) print(a, sess.run(tf.argmax(a, 1))) print('--------------') b = sess.run(hypothesis, feed_dict={X: [[1, 3, 4, 3]]}) print(b, sess.run(tf.argmax(b, 1))) print('--------------') c = sess.run(hypothesis, feed_dict={X: [[1, 1, 0, 1]]}) print(c, sess.run(tf.argmax(c, 1))) print('--------------') all = sess.run(hypothesis, feed_dict={ X: [[1, 11, 7, 9], [1, 3, 4, 3], [1, 1, 0, 1]]}) print(all, sess.run(tf.argmax(all, 1))) | cs |
반응형
'잡다한 IT > 머신러닝 & 딥러닝' 카테고리의 다른 글
06-2. Softemax_zoo_classifier (0) | 2018.08.15 |
---|---|
05-2. Logistic regression diabetes (0) | 2018.08.15 |
05-1. Logistic Regression Classifier (0) | 2018.08.15 |
04-3. Mulit-variable linear regression with file input (0) | 2018.08.15 |
04-2. Multi-variable linear regression with tf.matmul (0) | 2018.08.15 |