■ Place hold 사용법을 익힌다. (파이썬 변수를 feed 처리함)
▶Place hold 사용 - 변수 대입
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
- place hold 에 feed_dict로 연결할 변수 생성
curr_W,curr_b,curr_loss = sess.run([W,b,loss],{x:x_train,y:y_train})
-세션을 실행할 때 place hold에 변수를 대입한다.
이때 사용되는 것이 feed_dict이다
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import tensorflow as tf W=tf.Variable([.3],tf.float32) b=tf.Variable([-.3],tf.float32) # X and Y data x=tf.placeholder(tf.float32) y=tf.placeholder(tf.float32) # Our hypothesis XW+b linear_model = x*W + b # cost/loss function loss=tf.reduce_sum(tf.square(linear_model-y)) # sum of the squares # Minimize optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) # training data x_train=[1,2,3,4] y_train=[0,-1,-2,-3] # training loop init=tf.global_variables_initializer() sess = tf.Session() sess.run(init) for i in range(1000): sess.run(train,{x:x_train,y:y_train}) #evaluate training accuracy curr_W,curr_b,curr_loss = sess.run([W,b,loss],feed_dict={x:x_train,y:y_train}) print("W:%s b:%s loss:%s"%(curr_W,curr_b,curr_loss)) | cs |
반응형
'잡다한 IT > 머신러닝 & 딥러닝' 카테고리의 다른 글
03-2 Minimizing Cost without tensorflow APIs (0) | 2018.08.07 |
---|---|
03-1 Minimizing Cost show graph (0) | 2018.08.07 |
02-2 Linear Regression : feed (0) | 2018.08.07 |
02-1 Linear Regression (0) | 2018.08.07 |
01 Tensorflow basic (0) | 2018.08.07 |